Hyperpolarized 13C magnetic resonance reveals early- and late-onset changes to in vivo pyruvate metabolism in the failing heart
نویسندگان
چکیده
AIMS Impaired energy metabolism has been implicated in the pathogenesis of heart failure. Hyperpolarized (13)C magnetic resonance (MR), in which (13)C-labelled metabolites are followed using MR imaging (MRI) or spectroscopy (MRS), has enabled non-invasive assessment of pyruvate metabolism. We investigated the hypothesis that if we serially examined a model of heart failure using non-invasive hyperpolarized [(13)C]pyruvate with MR, the profile of in vivo pyruvate oxidation would change throughout the course of the disease. METHODS AND RESULTS Dilated cardiomyopathy (DCM) was induced in pigs (n = 5) by rapid pacing. Pigs were examined using MR at weekly time points: cine-MRI assessed cardiac structure and function; hyperpolarized [2-(13)C]pyruvate was administered intravenously, and (13)C MRS monitored [(13)C]glutamate production; (31)P MRS assessed cardiac energetics [phosphocreatine (PCr)/ATP]; and hyperpolarized [1-(13)C]pyruvate was administered for MRI of pyruvate dehydrogenase complex (PDC)-mediated pyruvate oxidation via [(13)C]bicarbonate production. Early in pacing, the cardiac index decreased by 25%, PCr/ATP decreased by 26%, and [(13)C]glutamate production decreased by 51%. After clinical features of DCM appeared, end-diastolic volume increased by 40% and [(13)C]bicarbonate production decreased by 67%. Pyruvate dehydrogenase kinase 4 protein increased by two-fold, and phosphorylated Akt decreased by half. Peroxisome proliferator-activated receptor-α and carnitine palmitoyltransferase-1 gene expression decreased by a half and a third, respectively. CONCLUSION Despite early changes associated with cardiac energetics and (13)C incorporation into the Krebs cycle, pyruvate oxidation was maintained until DCM developed, when the heart's capacity to oxidize both pyruvate and fats was reduced. Hyperpolarized (13)C MR may be important to characterize metabolic changes that occur during heart failure progression.
منابع مشابه
Assessment of Metformin induced changes in cardiac redox state using hyperpolarized[1-13C]pyruvate
Background Metformin improves cardiovascular outcomes in diabetes, but its mechanism of action is controversial. Recent evidence suggests that Metformin reduces gluconeogenesis by altering hepatic redox state. Whether Metformin also alters cardiac redox state and metabolism is unknown, in part because of the difficulty in measuring cardiac metabolism in vivo. Hyperpolarized [1-C]pyruvate magnet...
متن کاملHyperpolarized 13C Metabolic MRI of the Human Heart
RATIONALE Altered cardiac energetics is known to play an important role in the progression toward heart failure. A noninvasive method for imaging metabolic markers that could be used in longitudinal studies would be useful for understanding therapeutic approaches that target metabolism. OBJECTIVE To demonstrate the first hyperpolarized 13C metabolic magnetic resonance imaging of the human hea...
متن کاملClinical Implications of Cardiac Hyperpolarized Magnetic Resonance Imaging
Alterations in cardiac metabolism are now considered a cause, rather than a result, of cardiac disease. Although magnetic resonance spectroscopy has allowed investigation of myocardial energetics, the inherently low sensitivity of the technique has limited its clinical application in the study of cardiac metabolism. The development of a novel hyperpolarization technique, based on the process of...
متن کاملAn intact small animal model of myocardial ischemia-reperfusion: Characterization of metabolic changes by hyperpolarized 13C MR spectroscopy.
Hyperpolarized carbon-13 magnetic resonance spectroscopy ((13)C MRS) enables the sensitive and noninvasive assessment of the metabolic changes occurring during myocardial ischemia-reperfusion. Ischemia-reperfusion models using hyperpolarized (13)C MRS are established in heart preparations ex vivo and in large animals in vivo, but an in vivo model in small animals would be advantageous to allow ...
متن کامل3D cardiac Chemical Shift Imaging of [1-13C] hyperpolarized acetate and pyruvate in pigs
Background 13C Dynamic Nuclear Polarization (DNP) with rapid dissolution together with Magnetic Resonance Chemical Shift Imaging (CSI) have been used for non-invasive real-time metabolic assessment in cardiac experimental models on a clinical 3T scanner. Here, we report an in vivo comparison of hyperpolarized [1-13C] pyruvate and [1-13C] acetate perfusion and metabolism: a method based on a 3D ...
متن کامل